Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 14(12): 8322-8330, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38567259

RESUMO

Treatments of N-(1H-benzo[d]imidazol-2-yl)pyrazine-2-carboxamide (HL1) and N-(benzo[d]thiazol-2-yl)pyrazine-2-carboxamide carboxamide ligands (HL2) with [Ru(p-cymene)Cl2]2 and [Ru(PPh3)3Cl2] precursors afforded the respective Ru(ii) complexes [Ru(L1)(p-cymene)Cl] (Ru1), [Ru(L2)(p-cymene)Cl] (Ru2), [Ru(L1)(PPh3)2Cl] (Ru3), and [Ru(L2)(PPh3)2Cl] (Ru4). These complexes were characterized by NMR, FT-IR spectroscopies, mass spectrometry, elemental analyses, and crystal X-ray crystallography for Ru2. The molecular structure of complex Ru2 contains one mono-anionic bidentate bound ligand and display pseudo-octahedral piano stool geometry around the Ru(ii) atom. The interactions with calf thymus DNA (CT-DNA) and bovine serum albumin (BSA) were investigated by spectroscopic techniques. The experimental binding studies suggest that complexes Ru1-Ru4 interact with DNA, primarily through minor groove binding, as supported by molecular docking results. Additionally, these complexes exhibit strong quenching of the fluorescence of tryptophan residues in BSA, displaying static quenching. The in vitro cytotoxicity studies of compounds Ru1-Ru4 were assessed in cancer cell lines (A549, PC-3, HT-29, Caco-2, and HeLa), as well as a non-cancer line (KMST-6). Compounds Ru1 and Ru2 exhibited superior cytotoxicity compared to Ru3 and Ru4. The in vitro cytotoxicity and selectivity of compounds Ru1 and Ru2 against A549, PC-3, and Caco-2 cell lines surpassed that of cisplatin.

2.
J Biol Inorg Chem ; 2024 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-38494554

RESUMO

Organometallic η6-arene ruthenium(II) complexes with 3-chloro-6-(1H-pyrazol-1-yl)pyridazine (Ru1, Ru2, and Ru5) and 3-chloro-6-(3,5-dimethyl-1H-pyrazol-1-yl)pyridazine (Ru3-4) N,N' heterocyclic and η6-arene (cymene (Ru1-4) or toluene (Ru 5)) have been synthesized. The ruthenium(II) complexes have common "three-legged piano-stool" pseudo-octahedral structures known for half-sandwich complexes. Evolution of their UV-Visible absorption spectra in PBS buffer or DMSO over 24 h confirmed their good solvolysis stability. Titrations of the complexes with the calf thymus DNA (CT-DNA) were monitored using UV-Visible absorption and fluorescence spectroscopies. The complexes interact moderately with CT-DNA and their binding constants are in the order of 104 M-1. Competitive binding of the complexes to a DNA-Hoechst 33,258 depicted competitive displacement of Hoechst from DNA's minor grooves. These complexes bind to glutathione forming GSH-adducts through S coordination by replacement of a halide, with the iodo-analogues having higher binding constants than the chloro-complexes. Cyclic voltammograms of the complexes exhibited one electron-transfer quasi-reversible process. Trends in the molecular docking data of Ru1-5/DNA were similar to those for DNA binding constants. Of the five, only Ru1, Ru3 and Ru5 showed some activity (moderate) against the MCF-7 breast cancer cells with IC50 values in the range of 59.2-39.9 for which Ru5 was the most active. However, the more difficult-to-treat cell line, MDA-MB 231 cell was recalcitrant to the treatment by these complexes.

3.
Eur J Med Chem ; 266: 116094, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38219660

RESUMO

In an effort to develop new potent anticancer agents, two Schiff base rhenium(I) tricarbonyl complexes, containing the ubiquitous aminoquinoline scaffold, were synthesized. Both aminoquinoline ligands and Re(I) complexes showed adequate stability over a 48-h incubation period. Furthermore, the cytotoxic activity of the precursor ligands and rhenium(I) complexes were evaluated against the hormone-dependent MCF-7 and hormone-independent triple negative MDA-MB-231 breast cancer cell lines. Inclusion of the [Re(CO)3Cl]+ entity significantly enhanced the cytotoxicity of the aminoquinoline Schiff base ligands against the tested cancer cell lines. Remarkably, the incorporation of the Schiff-base iminoquinolyl entity notably enhanced the cytotoxic activity of the Re(I) complexes, in comparison with the iminopyridyl entity. Notably, the quinolyl-substituted complex showed up to three-fold higher activity than cisplatin against breast cancer cell lines, underpinning the significance of the quinoline pharmacophore in rational drug design. In addition, the most active Re(I) complex showed better selectivity towards the breast cancer cells over non-tumorigenic FG-0 cells. Western blotting revealed that the complexes increased levels of γH2AX, a key DNA damage response protein. Moreover, apoptosis was confirmed in both cell lines due to the detection of cleaved PARP. The complexes show favourable binding affinities towards both calf thymus DNA (CT-DNA), and bovine serum albumin (BSA), and the order of their interactions align with their cytotoxic effects. The in silico molecular simulations of the complexes were also performed with CT-DNA and BSA targets.


Assuntos
Antineoplásicos , Neoplasias da Mama , Complexos de Coordenação , Rênio , Humanos , Feminino , Bases de Schiff/farmacologia , Bases de Schiff/química , Rênio/química , DNA/metabolismo , Células MCF-7 , Soroalbumina Bovina/química , Hormônios , Aminoquinolinas/farmacologia , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Antineoplásicos/química , Ligantes
4.
Chembiochem ; 24(13): e202300271, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37191065

RESUMO

The increased success of small metal-containing molecules as pharmaceutical agents has prompted investigations into the pharmacological activity of a different class of metal-based compounds; supramolecular coordination complexes (SCCs). Such complexes have been extensively investigated for their anticancer activity, with many displaying activities comparable or superior to available clinical chemotherapeutic drugs. Here, we evaluated a series of quinoline-containing binuclear complexes and metallarectangles for their in vitro anticancer activity in the hormone receptor positive MCF-7 and triple negative MDA-MB-231 breast cancer cell lines. The preliminary cytotoxic screen, in the MCF-7 cell line, revealed that the ligand (7-chloro-4-(pyridin-4-yl)quinoline, L) and metallarectangle [{Ir(µ-Cl)(Cp*)}4 (µ-L)2 ](OTf)4 display superior activity to cisplatin, while [{Ru(p-cymene)}4 (µ-η2 -η2 -C2 O4 )2 (µ-L)2 ](OTf)4 was more potent than cisplatin in the triple-negative MDA-MD-231 cell line. Upon evaluation in a multidose screen, ligand L and metallarectangle [{Ir(µ-Cl)(Cp*)}4 (µ-L)2 ](OTf)4 displayed antiproliferative activity almost two-fold greater than cisplatin in the MCF-7 cell line, while [{Ru(p-cymene)}4 (µ-η2 -η2 -C2 O4 )2 (µ-L)2 ](OTf)4 was over two-times more active than cisplatin in the MDA-MB-231 cell line. Additionally, using the non-tumorigenic MCF-12 A breast epithelial cell line, the compounds demonstrate increased selectivity toward breast cancer cells over non-tumorigenic cells. Furthermore, investigations into the interactions of ligand L and selected complexes with calf thymus DNA (CT-DNA) and bovine serum albumin (BSA) indicate favourable binding.


Assuntos
Antineoplásicos , Neoplasias da Mama , Complexos de Coordenação , Quinolinas , Rutênio , Humanos , Feminino , Cisplatino , Simulação de Acoplamento Molecular , Soroalbumina Bovina/química , Ligantes , Complexos de Coordenação/química , Antineoplásicos/química , Células MCF-7 , DNA/química , Linhagem Celular Tumoral , Rutênio/farmacologia , Rutênio/química
5.
Biometals ; 36(5): 1109-1123, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37184626

RESUMO

The synthesis, substitution kinetics and DNA/BSA interactions of four cationic Pd(II) complexes [Pd(1)Cl]BF4 (Pd1), [Pd(2)Cl]BF4 (Pd2), [Pd(3)Cl]BF4 (Pd3) and [Pd(4)Cl]BF4 (Pd4), derived from the reaction of [PdCl2(NCCH3)2] with ligands 2,6-bis(3-methylimidazolium-1-yl)pyridine dibromide (1), 2,6-bis(3-ethylimidazolium-1-yl)pyridine dibromide (2), 2,6-bis(1-methylimidazole-2-thione)pyridine (3), and 2,6-bis(1-ethylimidazole-2-thione)pyridine (4), respectively are reported. The complexes were characterised by various spectroscopic techniques and single crystal X-ray diffraction for compound Pd2. Kinetic reactivity of the complexes with the biologically relevant nucleophiles thiourea (Tu), L-methionine (L-Met) and guanosine 5'-monophosphate sodium salt (5'-GMP) was in the order: Pd1 > Pd2 > Pd3 > Pd4, which was largely dependent on the electronic and ring size of the chelate ligands, consistent with Density functional theory (DFT) simulations. The interactions of the complexes with calf thymus DNA (CT-DNA) and bovine serum albumin (BSA) binding titrations showed strong binding. Both the experimental and in silico data reveal CT-DNA intercalative binding mode.


Assuntos
Antineoplásicos , Complexos de Coordenação , Complexos de Coordenação/química , Paládio/química , Ligantes , Tionas , Piridinas/química , Eletrônica , DNA/química , Soroalbumina Bovina/química , Antineoplásicos/química , Cinética
6.
J Biol Inorg Chem ; 27(7): 653-664, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36197522

RESUMO

The pincer complexes, [Pd(L1)Cl]BF4 (PdL1), [Pd(L2)Cl]BF4 (PdL2), [Pd(L3)Cl]BF4 (PdL3), [Pd(L4)Cl]BF4 (PdL4) were prepared by reacting the corresponding ligands, 2,6-bis[(1H-pyrazol-1-yl)methyl]pyridine (L1), bis[2-(1H-pyrazol-1-yl)ethyl]amine (L2), bis[2-(1H-pyrazol-1-yl)ethyl]ether (L3), and bis[2-(1H-prazol-1-yl)ethyl]sulphide (L4) with [PdCl2(NCMe)]2 in the presence NaBF4. The solid-state structures of complexes PdL1-PdL4 confirmed a tridentate coordination mode, with one chloro ligand completing the coordination sphere to afford square-planar complexes. Chemical behaviour of the complexes in solution confirms their stability in both aqueous and DMSO stock media. The electrochemical properties of the compounds showed irreversible two-electron reduction process. Kinetic reactivity of Pd complexes with the biological nucleophiles viz, thiourea (Tu), L-methionine (L-Met) and guanosine 5'-diphosphate disodium salt (5'-GMP) followed the order: PdL2 < PdL3 < PdL4, and PdL2 < PdL1. The kinetic reactivity is subject to the electronic effects of the spectator ligand(s), and the trend was supported by the DFT computed results. The palladium complexes PdL1-PdL4 bind to calf thymus (CT-DNA) via intercalation mode. In addition, the bovine serum albumin (BSA) showed good binding affinity to the complexes. The mode of quenching mechanism of the intrinsic fluorescence of CT-DNA and BSA by the complexes was found to be static. The order of interactions of the complexes with DNA and BSA was in tandem with the rate of substitution kinetics. The complexes, however, displayed relatively low cytotoxicity (IC50 > 100 µM) when tested against the human cervical adenocarcinoma (HeLa) cell line and the transformed human lung fibroblast cell line (MRC-5 SV2).


Assuntos
Antineoplásicos , Complexos de Coordenação , Aminas , Antineoplásicos/química , Complexos de Coordenação/química , DNA/química , Dimetil Sulfóxido , Éteres , Guanosina Difosfato , Guanosina Monofosfato , Humanos , Cinética , Ligantes , Metionina/química , Paládio/química , Piridinas/química , Soroalbumina Bovina/química , Sulfetos , Tioureia
7.
Dalton Trans ; 50(23): 8127-8143, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34027534

RESUMO

Treatments of N-(pyridin-2-ylmethyl)pyrazine-2-carboxamide (L1), N-(quinolin-8-yl)pyrazine-2-carboxamide (L2), N-(quinolin-8-yl)picolinamide (L3) and N-(quinolin-8-yl)quinoline-2-carboxamide (L4) with [PdCl2(NCMe)]2 afforded the corresponding Pd(ii) complexes, [Pd(L1)Cl] (PdL1); [Pd(L2)Cl] (PdL2); [Pd(L3)Cl] (PdL3); and [Pd(L4)Cl] (PdL4) in moderate yields. Structural characterisation of the compounds was achieved by NMR and FT-IR spectroscopies, elemental analyses and single crystal X-ray crystallography. The solid-state structures of complexes PdL2-PdL4 established the presence of one tridentate carboxamide and Cl ligands around the Pd(ii) coordination sphere, to give distorted square planar complexes. Electrochemical investigations of PdL1-PdL4 showed irreversible one-electron oxidation reactions. Kinetics reactivity of the complexes towards bio-molecules, thiourea (Tu), l-methionine (L-Met) and guanosine 5'-diphosphate disodium salt (5'-GMP) decreased in the order: PdL1 > PdL2 > PdL3 > PdL4, in tandem with the density functional theory (DFT) data. The complexes bind favourably to calf thymus (CT-DNA), and bovine serum albumin (BSA), and the order of their interactions agrees with the substitution kinetics trends. The in vitro cytotoxic activities of PdL1-PdL4 were examined in cancer cell lines A549, PC-3, HT-29, Caco-2, and HeLa, and a normal cell line, KMST-6. Overall, PdL1 and PdL3 displayed potent cytotoxic effects on A549, PC-3 HT-29 and Caco-2 comparable to cisplatin. All the investigated complexes exhibited lower toxicity on normal cells than cisplatin.


Assuntos
Antineoplásicos/farmacologia , Complexos de Coordenação/farmacologia , DNA/química , Paládio/farmacologia , Soroalbumina Bovina/química , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Bovinos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Teoria da Densidade Funcional , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Cinética , Estrutura Molecular , Paládio/química , Células Tumorais Cultivadas
8.
J Inorg Biochem ; 210: 111156, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32645652

RESUMO

Reactions of 2,6-bis(benzimidazol-2-yl)pyridine (L1), 2,6-bis(benzoxazol-2-yl)pyridine (L2), and 2,6-bis(benzothiazol-2-yl)pyridine (L3) with [Pd(NCMe)2Cl2] in the presence of NaBF4 afforded the corresponding Pd(II) complexes, [Pd(L1)Cl]BF4, PdL1; [Pd(L2)Cl]BF4, PdL2; [Pd(L3)Cl]BF4, PdL3; respectively, while reaction of bis[(1H-benzimidazol-2-yl)methyl]amine (L4) with [Pd(NCMe)2Cl2] afforded complex [Pd(L4)Cl]Cl, PdL4. Characterisation of the complexes was accomplished using NMR, IR, MS, elemental analyses and single crystal X-ray crystallography. Ligand substitution kinetics of these complexes by biological nucleophiles thiourea (Tu), L-methionine (L-Met) and guanosine 5'-diphosphate disodium salt (5-GMP) were examined under pseudo-first order conditions. The reactivity of the complexes decreased in the order: PdL1 > PdL2 > PdL3 > PdL4, ascribed to electronic effects. Density functional theory (DFT) supported this trend. Studies of interaction of the Pd(II) complexes with calf thymus DNA (CT-DNA) revealed strong binding affinities via intercalative binding mode. Molecular docking studies established associative non-covalent interactions between the Pd complexes and DNA. The in vitro cytotoxic activities of PdL1-PdL4 were assessed in cancer cell lines HeLa and MRC5-SV2 and a normal cell line MRC-5, using the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. PdL1 exhibited cytotoxic potency and selectivity against HeLa cell that was comparable to cisplatin's. Complex PdL1, unlike cisplatin, did not significantly induce caspase-dependent apoptosis.


Assuntos
Antineoplásicos/farmacologia , Azóis/farmacologia , Complexos de Coordenação/farmacologia , DNA de Forma B/metabolismo , Substâncias Intercalantes/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/metabolismo , Azóis/síntese química , Azóis/metabolismo , Bovinos , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Complexos de Coordenação/síntese química , Complexos de Coordenação/metabolismo , DNA/metabolismo , Teoria da Densidade Funcional , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Substâncias Intercalantes/síntese química , Substâncias Intercalantes/metabolismo , Ligantes , Modelos Químicos , Simulação de Acoplamento Molecular , Paládio/química , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...